A novel deep learning method for predictive modeling of microbiome data.

With the development and decreasing cost of next-generation sequencing technologies, the study of the human microbiome has become a rapid expanding research field, which provides an unprecedented opportunity in various clinical applications such as drug response predictions and disease diagnosis. It is thus essential and desirable to build a prediction model for clinical outcomes based on microbiome data that usually consist of taxon abundance and a phylogenetic tree. Importantly, all microbial species are not uniformly distributed in the phylogenetic tree but tend to be clustered at different phylogenetic depths. Therefore, the phylogenetic tree represents a unique correlation structure of microbiome, which can be an important prior to improve the prediction performance.

[Linking template=”default” type=”products” search=”KT-32802″ header=”2″ limit=”180″ start=”2″ showCatalogNumber=”true” showSize=”true” showSupplier=”true” showPrice=”true” showDescription=”true” showAdditionalInformation=”true” showImage=”true” showSchemaMarkup=”true” imageWidth=”” imageHeight=””]