Easy Saliva Test Invbio, 25 tests

The Invbio Covid (SARS-Cov-2) Antigen Rapid 25 Tests Device (Saliva) explained

Developped in 2021 this easy Corona virus (SARS-Cov2) Antigen Test Device, 25 tests a box on Saliva and sputum is an in vitro diagnostic test for the qualitative detection of covid antigens in human sputum and saliva, using the rapid immuno-chromatographic lateral flow method with a Genprice casette device. These casettes are disposable.

The identification is based on mouse monoclonal antibodies specific for the covid antigen. If you are anigen positive you are at risk to infect other people or animals like cats.

How does the saliva COVID-19 Rapid Test Device of Invbio works?

  1. One line on the C of control means negative
  2. Two lines one on the Ag and one on the control means positive
  3. No lines mean the test failed

Buy the not painful Antigen Rapid Test Devices for Saliva from Maxanim Gentaur

  1. CE Mark and EUA for USA Emmergency Use Authorisation.
  2. Not FDA approved in februari 2021
  3. Relative sensitivity: 96.17 %
  4. Relative specificity: >99.9%
  5. Accuracy:98.79%%
  6. Specimen: Saliva, 10-20 minutes to get results

Innovation Biotechis a biotechnology company specializing in research, development and manufacturing.

  1. advanced medical in-vitro diagnostic (IVD) rapid test kits
  2. laboratory disposal products

InvBio Saliva test is one the most used and reliable saliva testing methods

Recommendations for the use of saliva as sample in Covid-19.

Use a standardized method for saliva collection, which minimizes the potential risk of transmission via contact by saliva droplets or aerosol.Use appropriate conditions for sample preservation.Use appropriate assays, validated and with sufficient sensitivity for application in saliva.Increase the knowledge base on clinical applications, allowing for a more accurate interpretation of the results.

Genprice provides the one step Covid test kit based on the INVBIO brand.

  1. Other Invbio products include Fertility Tests, Infectious diseases, Tumor markers, DOA test, test cup, Urinalysis reagent strip, Gentaur ELISA kit, Digital alcohol tester and urine analyzers.
  2. Genprice troponin I test, alcohol screening saliva test strips, urine strips, elisa kits and microscope slides are available in Europe and the UK through our distributors Maxanim merged with Gentaur.
  3. These laboratory products obtained approval licenses ISO13485, FSC certificate, and most of our products get CE mark.
  4. Our objective is the utmost satisfaction of our clients all around the world by supplying our quality and economical products
    Research reagents for Lab Research References

  1. Yan C.H., Faraji F., Prajapati D.P., Boone C.E., DeConde A.S. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int. Forum Allergy Rhinol. 2020 doi: 10.1002/alr.22579. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Tvarijonaviciute A., Martinez-Subiela S., Lopez-Jornet P., Lamy E., editors. Saliva in Health and Disease. The Present and Future of A Unique Sample for Diagnosis. Springer Nature; Cham, Switzerland: 2020. [Google Scholar]

Contreras-Aguilar M.D., Escribano D., Martínez-Subiela S., Martínez-Miró S., Rubio M., Tvarijonaviciute A., Tecles F., Cerón J.J. Influence of the way of reporting alpha-amylase values in saliva in different naturalistic situations: A pilot study. PLoS ONE. 2017;12:e0180100. doi: 10.1371/journal.pone.0180100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

First Saliva Test for COVID-19 Approved for Emergency Use by FDA|The Scientist Magazine® [(accessed on 13 May 2020)]; Available online: https://www.the-scientist.com/news-opinion/first-saliva-test-for-covid-19-approved-for-emergency-use-by-fda-67416.

 To K.K.W., Yip C.C.Y., Lai C.Y.W., Wong C.K.H., Ho D.T.Y., Pang P.K.P., Ng A.C.K., Leung K.H., Poon R.W.S., Chan K.H., et al. Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: A diagnostic validity study. Clin. Microbiol. Infect. 2019;25:372–378. doi:

1016/j.cmi.2018.06.009. [PubMed] [CrossRef] [Google Scholar]9. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Wang W.K., Chen S.Y., Liu I.J., Chen Y.C., Chen H.L., Yang C.F., Chen P.J., Yeh S.H., Kao C.L., Huang L.M., et al. Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis. Emerg. Infect. Dis. 2004;10:1213–1219. doi: 10.3201/eid1007.031113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Tvarijonaviciute A., Martinez-Lozano N., Rios R., Marcilla de Teruel M.C., Garaulet M., Cerón J.J. Saliva as a non-invasive tool for assessment of metabolic and inflammatory biomarkers in children. Clin. Nutr. 2019 doi: 10.1016/j.clnu.2019.10.034. [PubMed] [CrossRef] [Google Scholar]

 To K., Tsang O., Chik-Yan Yip C., Chan K., Wu C., Chan J., Leung W., Chik T., Choi C., Kandamby D., et al. Consistent Detection of 2019 Novel Coronavirus in Saliva | Clinical Infectious Diseases|Oxford Academic. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

To K.K.-W., Tsang O.T.-Y., Leung W.-S., Tam A.R., Wu T.-C., Lung D.C., Yip C.C.-Y., Cai J.-P., Chan J.M.-C., Chik T.S.-H., et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020;20:565–574. doi: 10.1016/S1473-3099(20)30196-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Azzi L., Carcano G., Gianfagna F., Grossi P., Gasperina D.D., Genoni A., Fasano M., Sessa F., Tettamanti L., Carinci F., et al. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 2020 doi: 10.1016/j.jinf.2020.04.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Xu J., Li Y., Gan F., Du Y., Yao Y. Salivary Glands: Potential Reservoirs for COVID-19 Asymptomatic Infection. J. Dent. Res. 2020 doi: 10.1177/0022034520918518. [PubMed] [CrossRef] [Google Scholar]

Han M., Seong M., Heo E., Park J., Kim N., Shin S., Cho S., Park S., Choi E. Sequential Analysis of Viral Load in a Neonate and Her Mother Infected With SARS-CoV-2-PubMed. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa447. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Drosten C., Chiu L.L., Panning M., Leong H.N., Preiser W., Tam J.S., Günther S., Kramme S., Emmerich P., Ng W.L., et al. Evaluation of Advanced Reverse Transcription-PCR Assays and an Alternative PCR Target Region for Detection of Severe Acute Respiratory Syndrome-Associated Coronavirus. J. Clin. Microbiol. 2004;42:2043–2047. doi: 10.1128/JCM.42.5.2043-2047.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Liu L., Wei Q., Alvarez X., Wang H., Du Y., Zhu H., Jiang H., Zhou J., Lam P., Zhang L., et al. Epithelial Cells Lining Salivary Gland Ducts Are Early Target Cells of Severe Acute Respiratory Syndrome Coronavirus Infection in the Upper Respiratory Tracts of Rhesus Macaques. J. Virol. 2011;85:4025–4030. doi: 10.1128/JVI.02292-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

To K.K., Lu L., Yip C.C., Poon R.W., Fung A.M., Cheng A., Lui D.H., Ho D.T., Hung I.F., Chan K.H., et al. Additional molecular testing of saliva specimens improves the detection of respiratory viruses. Emerg. Microbes Infect. 2017;6:1–7. doi: 10.1038/emi.2017.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Bjustrom-Kraft J., Woodard K., Giménez-Lirola L., Rotolo M., Wang C., Sun Y., Lasley P., Zhang J., Baum D., Gauger P., et al. Porcine epidemic diarrhea virus (PEDV) detection and antibody response in commercial growing pigs. BMC Vet. Res. 2016;12:99. doi: 10.1186/s12917-016-0725-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Niederwerder M.C., Nietfeld J.C., Bai J., Peddireddi L., Breazeale B., Anderson J., Kerrigan M.A., An B., Oberst R.D., Crawford K., et al. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs. J. Vet. Diagn. Investig. 2016;28:671–678. doi: 10.1177/1040638716663251. [PubMed] [CrossRef] [Google Scholar]

. Khurshid Z., Zafar M., Khan E., Mali M., Latif M. Human saliva can be a diagnostic tool for Zika virus detection. J. Infect. Public Health. 2019;12:601–604. doi: 10.1016/j.jiph.2019.05.004. [PubMed] [CrossRef] [Google Scholar]

 Boppana S.B., Ross S.A., Shimamura M., Palmer A.L., Ahmed A., Michaels M.G., Sánchez P.J., Bernstein D.I., Tolan R.W., Novak Z., et al. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N. Engl. J. Med. 2011;364:2111–2118. doi: 10.1056/NEJMoa1006561. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Parry J.V., Perry K.R., Mortimer P.P. Sensitive assays for viral antibodies in saliva: An alternative to tests on serum. Lancet. 1987;330:72–75. doi: 10.1016/S0140-6736(87)92737-1. [PubMed] [CrossRef] [Google Scholar]

 McKie A., Vyse A., Maple C. Novel methods for the detection of microbial antibodies in oral fluid. Lancet Infect. Dis. 2002;2:18–24. doi: 10.1016/S1473-3099(01)00169-4. [PubMed] [CrossRef] [Google Scholar]

. Hettegger P., Huber J., Paßecker K., Soldo R., Kegler U., Nöhammer C., Weinhäusel A. High similarity of IgG antibody profiles in blood and saliva opens opportunities for saliva based serology. PLoS ONE. 2019;14:e0218456. doi: 10.1371/journal.pone.0218456. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Mortimer P.P., Parry J.V. Detection of antibody to HIV in saliva: A brief review. Clin. Diagn. Virol. 1994;2:231–243. doi: 10.1016/0928-0197(94)90048-5. [PubMed] [CrossRef] [Google Scholar]

. González V., Martró E., Folch C., Esteve A., Matas L., Montoliu A., Grífols J.R., Bolao F., Tural C., Muga R., et al. Detection of hepatitis C virus antibodies in oral fluid specimens for prevalence studies. Eur. J. Clin. Microbiol. Infect. Dis. 2008;27:121–126. doi: 10.1007/s10096-007-0408-z. [PubMed] [CrossRef] [Google Scholar]

 Flodgren G. Immunity after SARS-CoV-2 Infection. Rapid Review 2020. Norwegian Institute of Public Health; Oslo, Norway: 2020. [Google Scholar]

Wan S., Xiang Y., Fang W., Zheng Y., Li B., Hu Y., Lang C., Huang D., Sun Q., Xiong Y., et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol. 2020 doi: 10.1002/jmv.25783. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Peng Y.D., Meng K., Guan H.Q., Leng L., Zhu R.R., Wang B.Y., He M.A., Cheng L.X., Huang K., Zeng Q.T. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E004. [PubMed] [Google Scholar]

 Cerón J.J., Martinez-Subiela S., Ohno K., Caldin M. A seven-point plan for acute phase protein interpretation in companion animals. Vet. J. 2008;177:6. doi: 10.1016/j.tvjl.2007.12.001. [PubMed] [CrossRef] [Google Scholar]

 Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., Lang C., Xiao Q., Xiao K., Yi Z., et al. Relationships among Lymphocyte Subsets, Cytokines, and the Pulmonary Inflammation Index in Coronavirus (COVID-19) Infected Patients. Br. J. Haematol. 2020;189:428–437. doi: 10.1111/bjh.16659. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Parra M.D., Tecles F., Subiela S.M., Cerón J.J. C-Reactive Protein Measurement in Canine Saliva. J. Vet. Diagn. Investig. 2005;17:139–144. doi: 10.1177/104063870501700207. [PubMed] [CrossRef] [Google Scholar]

Tvarijonaviciute A., Zamora C., Martinez-Subiela S., Tecles F., Pina F., Lopez-Jornet P. Salivary adiponectin, but not adenosine deaminase, correlates with clinical signs in women with Sjögren’s syndrome: A pilot study. Clin. Oral Investig. 2019;23:1407–1414. doi: 10.1007/s00784-018-2570-3. [PubMed] [CrossRef] [Google Scholar]

 Cerón J.J. Acute phase proteins, saliva and education in laboratory science: An update and some reflections. BMC Vet. Res. 2019;15:197. doi: 10.1186/s12917-019-1931-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Franco-Martínez L., Rubio C.P., Contreras-Aguilar M.D. Methodology Assays for the Salivary Biomarkers’ Identification and Measurement. In: Tvarijonaviciute A., Martinez-Subiela S., Lopez-Jornet P., Lamy E., editors. Saliva in Health and Disease. Springer Nature; Cham, Switzerland: 2020. pp. 67–95. [Google Scholar]

 Katsani K.R., Sakellari D. Saliva proteomics updates in biomedicine. J. Biol. Res. 2019;26:17. doi: 10.1186/s40709-019-0109-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]39. Gautier J.-F., Ravussin Y. A New Symptom of COVID-19: Loss of Taste and Smell. Obesity. 2020;28:848. doi: 10.1002/oby.22809. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 Lamy E., Torregrossa A.-M., Castelo P.M., Capela e Silva F. Saliva in Ingestive Behavior Research: Association with Oral Sensory Perception and Food Intake. In: Tvarijonaviciute A., Martinez-Subiela S., Lopez-Jornet P., Lamy E., editors. Saliva in Health and Disease. Springer Nature; Cham, Switzerland: 2020. pp. 23–48. [Google Scholar]